什么是核磁共振检查? 其有哪些特点?

2019-04-18
字体:
浏览:
文章简介:核磁共振检查磁共振成像(Nucler Magnetic Resonance Imaging 简称MRI),是继CT后医学影像学的又一重大进步.自1980年代应用以来,它以极快的速度得到发展. 来,它以极快的速度得到发展.其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量.在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像. 由于它彻底摆脱了电离辐射对人体的

核磁共振检查磁共振成像(Nucler Magnetic Resonance Imaging 简称MRI),是继CT后医学影像学的又一重大进步。自1980年代应用以来,它以极快的速度得到发展。

来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 由于它彻底摆脱了电离辐射对人体的损害,又有参数多,信息量大,可多方位成像,以及对软组织有高分辨力等突出的特点,从它一问世便引起各方面学者的重视,无论是设备的改进、软件的更新及升级,还是对全身各部位器官的诊断作用的研究,发展相当快,目前已经成熟,被广泛用于临床疾病的诊断,对有些病变成为必不可少的检查方法。

核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。

MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。

MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。

1、灰阶成像:像X线、CT图片一样有黑白灰度,但不

表示密度,而是信号的强度。

2、流空效应:流动的液体信号不能获得,呈无信号与周围信号形成对比,如血管、脑脊液的流空。

3、可多方位、多层面成像,以二维、三维方式显示人体的解剖结构和病变,不仅能达到定位诊断,对定性诊断亦有重要的参考价值。

4、信息量大,常用的自旋回波程序,最基本的就有三种图像,即质子密度像、T1加权像、T2加权像,其它尚有多种成像技术,如利用血流的流空效应可构成血流成像,不用造影剂做成血管造影,叫做“核磁共振血管造影”MRA(MR Angio graphy),按人体管道对照水做成图像叫做水成像,如胆管成像、肾盂输尿管成像、椎管成像和为了观察病变除掉脂肪的高信号干扰而做成的图像叫脂肪抑制成像(STIR),同样尚有水抑制(FLAIR),以及研究人体的功能的功能成像等。总之,MRI可以提供大量的信息,供医生诊断分析。

5、由于核磁共振现象直接反映人体内水分子中质子的周围环境状态和分子结构中的位置,这就提供了分子水平上的生化病理状态和信息,从而可以对人体内的水肿、感染、炎症、变性等后来形成的形态学上的变化之前进行早期的诊断,或超早期诊断。这是X线、CT、b超等影像技术不可比拟的。

6、对软组织的反差大,具有高分辨力,对确定炎症、水肿、肿瘤等病变范围十分明确,尤其是对外科确定手术范围提供了非常可靠的依据。

7、对人体没有任何放射性损害,可多次检查(多部位、多次复查)。

8、绝大部分病例不需要使用造影剂,少数病例目前使用的造影剂为金属钆的螯合物,叫钆二乙烯三胺五乙酸二甲基葡胺盐(简称Gd-DTPA)十分安全,至今20余年来无死亡等严重反应报告。