牛顿的贡献都有哪些 对人们起到什么帮助
知识的力量永远都是非常强大的,知识就是我们的精神食粮,科学家牛顿就给我们留下了宝贵的财富,这样知识让我们受用终身,他留下的知识启发了更多的人,发现更多人类未解之谜,造福世界。
牛顿第一定律说明了两个问题:⑴它明确了力和运动的关系。物体的运动并不是需要力来维持,只有当物体的运动状态发生变化,即产生加速度时,才需要力的作用。在牛顿第一定律的基础上得出力的定性英文名称:Newton's first law定义:力是一个物体对另一个物体的作用,它使受力物体改变运动状态。
⑵它提出了惯性的概念。物体之所以保持静止或匀速直线运动,是在不受力的条件下,由物体本身的特性来决定的。物体所固有的、保持原来运动状态不变的特性叫惯性。物体不受力时所作的匀速直线运动也叫惯性运动。牛顿在第一定律中没有说明静止或运动状态是相对于什么参照系说的,然而,按牛顿的本意,这里所指的运动是在绝对时间过程中的相对于绝对空间的某一绝对运动。
牛顿第一定律成立于这样的参照系。通常把牛顿第一定律成立的参照系成为惯性参照系,因此这一定律在实际上定义了惯性参照系这一重要概念。牛顿第一定律是作为牛顿力学体系一条规律,它具有特殊意义,是三大定律中不可缺少的独立定律。不能将第一定律看作牛顿第二定律的特例。注意:力不是产生速度的原因,而是产生加速度的原因!
笛卡尔的解析几何把描述运动的函数关系和几何曲线相对应。牛顿在老师巴罗的指导下,在钻研笛卡尔的解析几何的基础上,找到了新的出路。可以把任意时刻的速度看是在微小的时间范围里的速度的平均值,这就是一个微小的路程和时间间隔的比值,当这个微小的时间间隔缩小到无穷小的时候,就是这一点的准确值。这就是微分的概念。
求微分相当于求时间和路程关系得在某点的切线斜率。一个变速的运动物体在一定时间范围里走过的路程,可以看作是在微小时间间隔里所走路程的和,这就是积分的概念。求积分相当于求时间和速度关系的曲线下面的面积。牛顿从这些基本概念出发,建立了微积分。
微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的结论加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。
牛顿运动定律包括牛顿第一运动定律、牛顿第二运动定律和牛顿第三运动定律三条定律,由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中总结提出。其中,第一定律说明了力的含义:力是改变物体运动状态的原因;第二定律指出了力的作用效果:力使物体获得加速度;第三定律揭示出力的本质:力是物体间的相互作用。
牛顿运动定律中的各定律互相独立,且内在逻辑符合自洽一致性。其适用范围是经典力学范围,适用条件是质点、惯性参考系以及宏观、低速运动问题。牛顿运动定律阐释了牛顿力学的完整体系,阐述了经典力学中基本的运动规律,在各领域上应用广泛。
实验原理
1、保持研究对象(小车)的质量(M)不变,改变砂桶内砂的质量(m),即改变牵引力测出小车的对应加速度,用图像法验证加速度是否正比于作用力。
2、保持砂桶内砂的质量(m)不变,改变研究对象的质量(M),即往小车内加减砝码,测出小车对应的加速度,用图像法验证加速度是否反比于质量。
实验器材
附有定滑轮的长木板、薄木垫、小车、细线、小桶及砂、打点计时器、低压交流电源、导线、天平(带一套砝码)、毫米刻度尺、纸带及复写纸等。
实验步骤
1、用天平测出小车和小桶的质量M0和m0,并记录数值;
2、按照要求安装实验器材,此时不把悬挂小桶用的细绳系在车上,即不给小车加牵引力;
3、平衡摩擦力,在长木板不带定滑轮的一端下面垫薄木板,并反复移动其位置,直到打点计时器正常工作后,小车在斜面上的运动可以保持匀速直线运动状态为止。
4、记录小车及车内所加砝码的质量;称好砂子后将砂倒入小桶,把细绳系在小车上并绕过定滑轮悬挂小桶;此时要调整定滑轮的高度使绳与木板平行;接通电源,放开小车,待打点计时器在纸带上打好点后,取下纸带,做好标记。
5、保持小车的总质量不变,改变砂的质量(均要用天平称量),按步骤4中方法打好纸带,做好标记。
6、在每条纸带上选取一段比较理想的部分,分别计算出加速度值。
7、用纵坐标表示加速度,横坐标表示作用力(即砂和砂桶的总重力mg),根据实验结果画出相应的点,如果这些点在一条直线上,便证明了质量一定的情况下,加速度与合外力成正比。
8、保持砂和桶的质量不变,在小车上加砝码(需记录好数据),重复上面的实验步骤,求出相应的加速度,用纵坐标表示加速度,横坐标表示小车及砝码的总质量的倒数1/M,根据实验结果画出相应的点,如果这些点在一条直线上,就证明了合 外力一定的情况下,加速度与质量成反比。
牛顿冷却定律(Newton's law of cooling):温度高于周围环境的物体向周围媒质传递热量逐渐冷却时所遵循的规律。当物体表面与周围存在温度差时,单位时间从单位面积散失的热量与温度差成正比,比例系数称为热传递系数。牛顿冷却定律是牛顿在1701年用实验确定的,在强制对流时与实际符合较好,在自然对流时只在温度差不太大时才成立。
是传热学的基本定律之一,用于计算对流热量的多少。 分析 即 -dT/dt=(T-Tc)/τ 式中, -dT/dt——物体的温度随时间下降的速度,负号表示物体的温度是下降的τ——物体的温度从T 下降到环境温度Tc实际所需要的弛豫时间在微分条件下,-dT/dt和(T-Tc)/τ是微线性关系。这是微线性思维的典范之一。
牛顿冷却定律的这个微分方程没有考虑物体的性质,所以这不是物性方程式。它只是关于一个假想物体,其温度随时间单纯下降的一个数学微分方程。与其叫“牛顿冷却定律”,毋宁叫“牛顿冷却定理”更准确。不过,这个明显的缺点,反而是最大的优点。它的无比抽象性在宣告:“这是任何物体冷却的共同遵守的数学规律!”。 实验表明
物体的温度随时间下降的速度和物体的结构以及理化性质并非完全无关。尤其是急速冷却的条件下,我们可以修改线性“牛顿冷却定理”,给它添加若干个非线性的项就可以了解决实际问题了。
伽利略在1632年实际上已经提出离心力和向心力的初步想法。布里阿德在1645年提出了引力平方比关系的思想.牛顿在1665~1666年的手稿中,用自己的方式证明了离心力定律,但向心力这个词可能首先出现在《论运动》的第一个手稿中。一般人认为离心力定律是惠更斯在1673年发表的《摆钟》一书中提出来的。根据1684年8月~10月的《论回转物体的运动》一文手稿中,牛顿很可能在这个手稿中第一次提出向心力及其定义。
万有引力与相作用的物体的质量乘积成正比,是发现引力平方反比定律过渡到发现万有引力定律的必要阶段.·牛顿从1665年至1685年,花了整整20年的时间,才沿着离心力—向心力—重力—万有引力概念的演化顺序,终于提出“万有引力”这个概念和词汇。·牛顿在《自然哲学的数学原理》第三卷中写道:“最后,如果由实验和天文学观测,普遍显示出地球周围的一切天体被地球重力所吸引,并且其重力与它们各自含有的物质之量成比例,则月球同样按照物质之量被地球重力所吸引。另一方面,它显示出,我们的海洋被月球重力所吸引;并且一切行星相互被重力所吸引,彗星同样被太阳的重力所吸引。由于这个规则,我们必须普遍承认,一切物体,不论是什么,都被赋与了相互的引力(gravitation)的原理。因为根据这个表象所得出的一切物体的万有引力(universal gravitation)的论证……”
牛顿在1665~1666年间只用离心力定律和开普勒第三定律,因而只能证明圆轨道上的而不是椭圆轨道上的引力平方反比关系。在1679年,他知道运用开普勒第二定律,但是在证明方法上没有突破,仍停留在1665~1666年的水平。只是到了1684年1月,哈雷、雷恩、胡克和牛顿都能够证明圆轨道上的引力平方反比关系,都已经知道椭圆轨道上遵守引力平方反比关系,但是最后可能只有牛顿才根据开普勒第三定律、从离心力定律演化出的向心力定律和数学上的极限概念或微积分概念,才用几何法证明了这个难题。
牛顿 -英国物理学家艾萨克·牛顿
艾萨克·牛顿(1643年(格里历)1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。 他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。
他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。
在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律,在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。 在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。 在经济学上,牛顿提出金本位制度。
实验一.
1求λ时为何要测几个半波长的总长?
答:多测几个取平均值,误差会减小
2为何波源的簧片振动频率尽可能避开振动源的机械共振频率?
答 当簧片达到某一频率(或其整数倍频率)时,会引起整个振动源(包括弦线)的机械共
振,从而引起振动不稳定。
3弦线的粗细和弹性对实验各有什么影响,应该如何选择?
答 弦线应该比较细,太粗的话会使振动不明显,弹性应该选择较好的,因为弹性不佳会造
成振动不稳定
4为波节,振动最大的点称为波腹,两个波节之间的长度是半波长
5因振簧片作水平方向的振动,理论上侧面平视应观察不到波形,你在实验中平视能观察得
到吗?什么情况能观察到,为什么?
答 平视不能观察到,因为。。。。。。
6为了使lgλ—lgT直线图上的数据点分布比较均匀,砝码盘中的砝码质量应如何改变?
答 每次增加相同重量的砝码
实验二.
1.外延测量法有什么特点?使用时应该注意什么问题?
答 当需要的数据在测量数据范围之外而不能测出,为了求得这个值,采用作图外推求值的
方法,即先用已测的数据绘制出曲线,再将曲线按原规律延长到待求值范围,在延长线部分
求出所需要的值 使用时要注意在所要值两边的点要均衡且不能太少并且在研究的范围内
没有突变的情况
2.物体的固有频率和共振频率有什么不同?它们之间有何联系?
答 物体的固有频率和共振频率是不同的概念,固有频率指与方程的根knl=4.7300对应的振
动频率,它们之间的关系为f固= f共?1/4Q^2
前者是物体的固有属性,由其结构,质量材质等决定,而后者是当外加强迫力的频率等于物
体基频时,使其发生共振时强迫力的频率
牛顿在伽利略等人工作的基础上进行了深入的研究工作,总结出了物体运动的三个基本定律,这就是我们现在所熟知的牛顿运动三定律。这三个运动定律,为经典力学奠定了坚实的基础,同时也对其他学科的发展产生了巨大的影响。
牛顿是万有引力定律的发现者。他从1665年开始着手用微积分方法研究物体运动的理论。在开普勒行星运动定律和其他人研究成果的基础上,牛顿运用数学方法推导出了万有引力定律。
牛顿把地球上物体的力学与天体力学统一到一个基本的力学体系中,创建了经典力学理论体系。经典力学正确地反映了宏观低速运动的客观规律,实现了自然科学的第一次大统一,这标志着人类对自然界认识的一次重大飞跃。