张首晟拓扑绝缘体 哪位大牛进来科普一下拓扑绝缘体吧
【拓扑绝缘体的表面金属态完全是由材料的体电子态的拓扑结构所决定,是由对称性所决定的,与表面 【拓扑绝缘体的表面金属态完全是由材料的体电子态的拓扑结构所决定,是由对称性所决定的,与表面的具体结构无关】这句话的意思是拓扑绝缘体的“拓扑”,不是实空间的拓扑结构,而是动量空间的拓扑结构。
说起拓扑,大家也许会联想到Möbius带,或者Klein瓶的东西,但实际上拓扑绝缘体与实空间的这些几何结构都没有关系,它的表面形貌和其它材料没有什么差别。
但是表面的电子态却按照不同自旋而具有不同的chirality,这是普通材料所没有的。而且这种表面态是一定会存在的,不管你的表面多么不平整或者有多少杂质,只要两个相对的表面不要靠得太近,那么chiral 的表面态一定会茁壮地存在。
这实际上是和材料体内的体态电子在动量空间的结构有关,体态电子的拓扑保证了表面态的性质。当然,本质上,你可以说这些都是自旋轨道耦合的结果。【拓扑绝缘体的基本性质是由“量子力学”和“相对论”共同作用的结果,由于自旋轨道耦合耦合作用,在表面上会产生由时间反演对称性保护的无能隙的自旋分辨的表面电子态】说是“量子力学”和“相对论”共同作用的结果,其实是一种对外宣传的包装。
其实做凝聚态的都知道,这跟一般意义上的相对论没有关系,拓扑绝缘体是一个量子力学效应。只不过电子的低能有效理论,是具有Dirac方程形式的,看起来像是相对论性的量子力学。电子在Fermi面附近将失去有效质量,成为像中微子一样的相对论性费米子。
但其实这里的相对论是凝聚态系统演生出来的,这里面的有效光速就是电子的Fermi速度,只有真正光速的百分之一。类似于中微子具有确定的手性,电子现在也具有确定的手性。
也就是说自旋和轨道自由度被捆绑在一起,自旋向上的电子只能向左运动的话,那么自旋向下的电子就只能向右运动。所谓时间反演对称性就是电子运动方向反向和自旋反向联合操作下,系统保持不变。
由于轨道和自旋自由度的锁死,电子没有办法被杂质散射了,也就是说不管拓扑绝缘体的表面上有多少杂质,只要电子是往前跑的,它就会一直往前跑,克服一切障碍地冲下去。张首晟教授有个很简单的解释。说的就是,如果它要被反弹回来往后跑,那么自旋就必须翻转。
在自旋的空间,也就是Bloch球上,自旋要从北极走向南极。而我们知道,任何一条连接南北极的路径都有一条相对的路径,比如你是经过中国的,那么对应的路径就经过美国。
而中国和美国的路径正好相差了一个半球,也就是大约半天的时差,对于1/2自旋来说,半天的时差会带来 pi 的 Berry phase积累。这样两条自旋翻转的路径就会完全相消,从而导致电子无法回弹。这样的性质相当于表面态无电阻,而且还自旋分辨,这样的材料对于自旋电子学的意义显然是非常重大的。 ... Everett
请问如果时间反演对称性被破坏, 如加入磁杂质等, 表面态还能不能保持?