关于卢柯课题组纳米材料的综述

2018-01-24
字体:
浏览:
文章简介:也可允许部分位错穿过,因此,随施密特因子差减小.层错能升高以及滑移方式的转变,孪晶界面会允许更多的位错穿过,从而明显提高疲劳裂纹萌生的阻力.

也可允许部分位错穿过,因此,随施密特因子差减小、层错能升高以及滑移方式的转变,孪晶界面会允许更多的位错穿过,从而明显提高疲劳裂纹萌生的阻力。通过进一步比较几种不同晶界的疲劳开裂机制,进而确定了萌生裂纹的难易顺序为:小角晶界>孪晶界面>大角晶界,这表明孪晶界面不但可以提高金属材料的强度和塑性,同时也具有较高的抗疲劳裂纹萌生阻力,这为金属材料的抗疲劳设计提供了新的可能,即通过对金属材料合金化与孪晶界面设计,可以获得最佳的强韧性与使役性能的匹配。

[7]

2.5 机械孪生促进高性能镁合金的开发

镁合金具有密度小、比强度和比刚度高、阻尼减振降噪性好、导热和导电性好、抗动态冲击载荷能力强、资源丰富等优点,是目前工程应用中最轻的金属结构材料,被誉为“用之不竭的轻质材料”“绿色的工程材料”,与钢、铝及工程塑料等结构材料互补,为交通工具、电子通信、航空航天和国防军工等领域的材料应用提供了重要选择。

然而与钢、铝等立方结构金属相比,密排六方结构镁合金室温变形能力较差,这是限制其大规模使用的瓶颈问题。为了协调材料的宏观塑性变形,从微观上讲金属通常需要启动一定数量的位错滑移系,然而镁合金在室温下能启动的滑移系主要只有基面滑移,其他滑移系(如柱面、c十a滑移)由于临界分切应力较大常温下不易启动。

除了位错滑移外,机械孪生是镁合金的另外一种重要的变形机制。镁合金中拉伸孪生由于其临界启动的剪切应力低,是镁合金常温下主要塑性变形模式之一。

拉伸孪生可以倾转晶体取向,进一步影响位错滑移,可以分割晶粒,对组织进行细化,从而起到阻碍位错滑移,提高材料加工硬化的效果。镁合金在塑性加工过程中易形成轴平行于受力方向的基面织构,导致材料呈现强烈的各向异性,会显著降低板材沿厚度方向的变形能力,大量研究表明,弱化基面织构可以显著提高镁合金塑性变形能力,常用的方法有添加稀土合金元素、等通道角挤压加工和异步轧制等。

稀土镁合金成本较高,难以大规模应用,等通道角挤压加工弱化织构效果较好,但其加工效率低,加工成本高,异步轧制对基面织构弱化效果有限,不能显著改善板材的加工变形能力。

由于拉伸孪生对镁合金变形行为有显著影响,因此可以利用预变形诱导拉伸孪生来调控镁合金的织构和组织,进而改变其力学行为和性能[8]。

镁合金在不同变形条件下(初始取向、温度、应变速及变形模式)的机械孪生行为与形成机理,重点探索了拉伸孪生对镁合金力学性能的影响规律。研究发现

通过引人拉伸孪晶细化晶粒可以同时提高镁合金的强度和塑性,降低了镁合金的拉压不对称性,并且首次提出通过侧轧诱导拉伸孪生调控板材织构,从而大幅度提高镁合金板材的单道次轧制能力。采用商业AZ31镁合金板材进行中试,发现采用侧轧新工艺的板材单道次轧制量可以提高一倍以上,大大提高了加工效率和成材率,有望在镁合金工业得到广泛应用。

2.6 原子尺度下机械孪生的模拟

强度和韧性是材料重要的力学特性,而传统的强化方法都以损失材料的韧性为代价。因此,如何在不损失材料韧性的前提下,尽可能地提高材料的强度,成为了人们关心的问题。纳米孪晶界是一种共格的晶体面缺陷"一方面,它们与一般的大角度晶界一样,可以有效地阻挡位错运动,在纳米孪晶界密度较高的情况下,可以大幅度提高材料的强度。

另一方面,由于纳米孪晶界的对称性,使得位错可以沿着它运动,产生台阶。位错也可以在与纳米孪晶界反应后,穿越进人相邻的晶粒。所以说纳米孪晶界具有很强的容纳位错的能力,这样就可以提高材料塑性变形的能力,也就改善了材料的韧性[9]。

利用分子动力学方法,从纳米尺度上研究了纳米孪晶界对纳米金属的断裂韧性的影响。结果表明,纳米孪晶界密度越高,材料的断裂韧性越强。在主裂纹扩展过程中,裂尖前方的纳米孪晶界吸收了大量的位错,使得裂尖不断钝化。

另外,在离主裂纹不远处还观察到子裂纹沿着孪晶界的扩展这一纳米尺度上的二级缺陷增韧机制。这种机制有效地缓解了主裂纹尖端(一级缺陷)附近的应力集中,使得裂纹扩展得以抑制。在纳米孪晶界密度较高的多晶试样中,观察到了裂纹偏折的现象,裂纹扩展的路径不同于没有纳米孪晶界的多晶试样。

具体地说,由于纳米孪晶界具有多余的自由能,因此在纳米孪晶材料中,裂纹倾向于沿着或者切割纳米孪晶界在晶粒内部进行扩展,这样的扩展方式使得裂纹的路径呈现一种“之”字形的形状,这种扩展方式可以有效地提高材料的断裂韧性。

此外,还考虑了纳米孪晶界的取向对材料断裂韧性的影响。当纳米孪晶界取向倾斜于裂纹方向时,断裂韧性的提高较垂直和平行的取向大。

这种更高的韧化效果可以归因于两种韧化机制的共同作用,即主裂纹尖端区域容纳了更多数量的不全位错,和更容易发生裂纹偏折。最后,在文章中的模拟还首次观察到了纳米孪晶界的弯曲,发现在弯曲的纳米孪晶界上,存在着一系列几何必须位错和晶界台阶。这说明,弯曲纳米孪晶界的出现对应着大量的塑性变形,同时滑移面的弯曲和晶界台阶的存在使得位错沿纳米孪晶界滑移的阻力增大,因此弯曲的纳米孪晶界同时具有韧化和强化的作

用[10]。通过原子尺度的计算模拟,研究了纳米孪晶界对纳米金属晶体断裂韧性的影响,并由此提出了4种韧化机制:(l)纳米孪晶界容纳位错的韧化机制;(2)纳米孪晶界使得主裂纹发生偏转的韧化机制;(3)二级缺陷增韧机制;(4)弯曲孪晶界增韧机制。在这4种韧化机制的共同作用下,纳米结构材料的断裂韧性得到大幅度的提高。这也为今后设计和制备具有高强度高韧性的纳米结构功能材料提供了思路和方法[11]。

3 结论

卢柯课题组在金属纳米材料方面的研究取得了很大的成就,发现了一系列的材料中新奇的现象,为科学的进步起了推动作用,同时也为中国的科技进步做出了很大的贡献。