好玩的数学张景中 张景中:感受小学数学思想的力量

2017-06-25
字体:
浏览:
文章简介:张景中:中共党员.中国科学院院士.计算机学科和数学学科博士生指导教师.中国科普作家协会理事长.任广州大学计算机教育软件研究所所长,中国科学院成都计算机应用研究所名誉所长,现任华中师范大学国家数字化学习工程技术研究中心学术委员会主任,江西城市学院名誉校长.学术委员会主任.1991年开始享受政府特殊津贴.1995年当选为中国科学院院士.曾获"全国优秀教师"等称号及"全国五一劳动奖章".2006年3月任江西城市学院名誉校长.学术委员会主任.2009年到电子科技大学工作,任

张景中:中共党员、中国科学院院士、计算机学科和数学学科博士生指导教师、中国科普作家协会理事长。任广州大学计算机教育软件研究所所长,中国科学院成都计算机应用研究所名誉所长,现任华中师范大学国家数字化学习工程技术研究中心学术委员会主任,江西城市学院名誉校长、学术委员会主任。

1991年开始享受政府特殊津贴。1995年当选为中国科学院院士。曾获“全国优秀教师”等称号及“全国五一劳动奖章”。2006年3月任江西城市学院名誉校长、学术委员会主任。2009年到电子科技大学工作,任电子科技大学计算机推理与可信计算实验室主任。2011年,被新成立的南方科技大学聘请讲授数学,旨在培养数学人才。

小学生学的数学很初等,很简单。尽管简单,里面却蕴含了一些深刻的数学思想。

函数思想最重要

最重要的,首推函数的思想。比如说加法,2和3加起来等于5,这个答案“5”是唯一确定的,写成数学式子就是2 3=5;如果把左端的3变成4,右端的5就变成6,把左端的2变成7,右端的5就变成10。右端的数被左端的数所唯一确定。在数学里,数量之间的确定性关系叫做函数关系。加法实际上是一个函数,由两个数确定一个数,是个二元函数。如果把式子里的第一个数“2”固定了,右端的和就被另一个数确定,就成了一元函数。

在中学里学习函数概念,只讲一元函数,以为多元函数复杂,不肯讲。其实,小学生先熟悉的是多元函数,因为学过的大量的数量关系是多元函数的例子。矩形面积等于长乘宽,是二元函数;梯形面积等于上底加下底的和再乘高除以2,是三元函数。所以多元函数的概念更容易理解。讲函数概念,不妨一开始就讲多元函数;具体研究,再从一元函数开始,这样比只讲一元函数更容易理解。

当然,不用给小学生讲函数概念。但老师有了函数思想,在教学过程中注意渗透变量和函数的思想,潜移默化,对学生数学素质的发展就有好处。

比如学乘法,九九表总是要背的。三七二十一的下一句是四七二十八,如果背了上句忘了下句,可以想想21 7=28,就想起来了。这样用理解帮助记忆,用加法帮助乘法,实质上包含了变量和函数的思想:3变成4,对应的21就变成了28。

这里不是把3和4看成孤立的两个数,而是看成一个变量先后取到的两个值。想法虽然简单,小学生往往想不到,要靠老师指点。挖掘九九表里的规律,把枯燥的死记硬背变成有趣的思考,不仅是教给学生学习方法,也是在渗透变量和函数的数学思想。

做除法要试商。80除以13,商是多少?试商5余15,不够;试商6余2,可以了。这里可以把余数看成是试商数的函数。试商的过程,就是调整函数的自变量,使函数值满足一定条件的过程。

小学数学里有很多应用题,解题的思想方法常常是因题而异。可不可以引导学生探索一下,用一个思想来解各种各样的题目呢?试商的思想,其实有普遍意义,可以用来求解许多不同类型的问题,包括应用问题,只要问题中的条件数据和解答之间有确定性的关系。

例如,修一条长32千米的公路,已经修了24千米,已修的路程是剩下的几倍?我们用类似试商的办法来试解。如果是1倍,剩下的是24千米,总长48千米,比题设数据大了;如果是2倍呢,剩下的是12千米,总长36千米,仍比题设数据大;3倍呢,剩下8千米,总长32千米,正好符合要求。

我想很多老师不会这样引导学生思考,认为这是个笨办法。其实,这个办法具有一般性,把试解的倍数看成自变量,把根据试解算出的总长看成试解倍数的函数,找寻使函数值符合题目要求的自变量,这个思路能解决很多问题,是“大智若愚”。

这样思考试算,最终也会发现具体的规律, 列出通常的算式。找寻使函数值符合一定要求的自变量,也就是解方程。方程本质上是函数的逆运算。加法看成函数,减法是解对应的方程;乘法看成函数,除法就是解对应的方程。函数思想和方程的方法,是一个事物的两面,都是大智慧,贯穿数学的所有领域。